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Abstract

This paper investigates the limit properties of a sequence of competitive outcomes existing

for economies where all commodities are indivisible, as indivisibility vanishes. The nature of

this limit depends on whether the “strong survival assumption” is assumed or not in the limit

economy, a standard “convex economy”. If this condition holds, then the equilibrium sequence

converges to a Walras equilibrium for the convex economy; otherwise it converges to a hierarchic

equilibrium, a competitive outcome existing in this economy despite the fact that a Walras

equilibrium might not exist.
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1 Introduction

The “discrete economy” proposed by Florig and Rivera [13] is a private ownership economy where

the indivisibility of commodities matters at an individual level, but is negligible at the level of

the entire economy. The continuum of individuals that participate in this economy is partitioned

into a finite number of types of agents. Individually, consumption and production sets are discrete

sets (the same subset for agents of the same type), while their aggregate by type of agent is the

convex hull of the individual set. Consumers of a given type are identical, except for a continuum

parameter with which we initially endow them. This parameter could be identified as “fiat money”

(see Drèze and Müller [8]), whose sole role is to facilitate the trade of indivisible commodities.
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Despite the fact that fiat money has no intrinsic value whatsoever, since it does not enter into

consumer preferences, it plays a fundamental role in the assignment of resources.1

Under mild conditions, Florig and Rivera [13] prove the existence of a “rationing equilibrium”

for discrete economies, a competitive outcome in which fiat money has a strictly positive price.2

Moreover, when the distribution of fiat money is such that different consumers are initially endowed

with a different amount of it, then a rationing equilibrium is a “Walras equilibrium with fiat money”

for the discrete economy.3 The proof of these results uses a “weak survival condition”, i.e., the

initial endowment of resources belongs to the convex hull of the consumption set.

The aim at this paper is to investigate the limit properties of rationing equilibrium as indivisibil-

ity vanishes. This limit is an element of a “convex economy” (with fiat money), a standard economy

with a finite number of agents, where both consumption and production sets are polyhedral, and

where consumers are initially endowed with fiat money. Since a convex economy as can always be

approximated by a sequence of discrete economies,4 the question in this paper actually refers to

the limit properties of a rationing equilibrium sequence, whose elements belong to a sequence of

discrete economies that converges to a convex economy.

Our main finding is that the nature of this limit is strongly dependent on the type of survival

condition assumed in the convex economy. Under a “strong survival condition” the limit is a Walras

equilibrium with fiat money for the convex economy. When fiat money has a strictly positive price

in the convex economy, then the Walras equilibrium with fiat money corresponds to a “dividend

equilibrium” (or “equilibrium with slack”), a generalized notion of the Walras equilibrium that

allows for the possibility that some agents spend more than the value of their initial endowment

(see Kajii [21] and Mas-Colell [23]). A situation like this may occur when, for instance, local

satiation holds for some consumers, or when some price rigidities are present in the convex economy.

Otherwise, fiat money becomes worthless in the convex economy (its price is zero at equilibrium),

thus the Walras equilibrium with fiat money is a standard Walras equilibrium.

In our opinion, a most interesting situation occurs when a “weak survival assumption” is as-

sumed for the convex economy. When the initial endowment of resources of each consumer does

not belong to the interior of consumption set, the indivisibility of commodities could matter, re-

1Fiat money should not be confused with “commodity money” (also known as “inside money”), yet another conti-
nuum parameter widely employed in the literature to assure the existence of a Walras equilibrium when commodities
are indivisible (see Bobzin [5] for a review of general equilibrium models with indivisible commodities). Contrary to
fiat money, commodity money satisfies overriding desirability, i.e. it is so desirable by the agents that an adequate
amount of it could replace the consumption of any bundle of indivisible commodities.

2The efficiency and core equivalence properties of a rationing equilibrium are studied in Florig and Rivera [12].
3In the case of a finite number of consumers and indivisibility of goods, Henry [19] shows that a Walras equilibrium

may not exist, while Shapley and Scarf [30] show that even the core may be empty. In the case of a continuum of
agents and perfect divisibility of goods (“large economy”), Aumann [3], Dierker [7] and Hildenbrand [20], among
others, study the existence of equilibrium and related properties. Contrary to large economies, the indivisibility of
commodities at an individual level is a crucial condition that remains active for discrete economies.

4In doing this, the types of agents of these discrete economies are the agents of the convex economy, and the
corresponding individual consumption and production sets are discrete subsets, such that their convex hulls converge
to the polyhedral sets of the standard economy. The Kuratowski – Painlevé set convergence notion is used in this
paper (see Rockafellar and Wets [28]).
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gardless of how small it is. It may then occur that not all consumers have access to all goods, i.e.,

a commodity may be so expensive that some consumers who do not own expensive goods would

not be able to purchase a single unit by selling their entire initial endowment. When the consump-

tion goods become “more divisible”, i.e., if the minimal unit per commodity decreases, then the

equilibrium price may react so that the situation persists.

Following Gay [14], based on a generalized concept of price, several authors have proposed

generalizations of the Walras equilibrium existing in the convex case, even when the Walras equi-

librium does not exist due to a failure of the strong survival assumption (see, for instance, Danilov

and Sotskow [6], Marakulin [25] and Mertens [26]). Backed up by several examples, Florig [10]

proposes an interpretation of those generalized prices in terms of small indivisibilities, introducing

the concept of “hierarchic equilibrium”.5

The main result of this paper is the proof of that when the weak survival condition holds in

the convex economy, then the rationing equilibrium sequence converges to a hierarchic equilibrium

of that economy. This result formalizes the interpretation of hierarchic equilibria in terms of small

indivisibilities given in Florig [10].

A direct consequence of our convergence results is that when both the strong survival assumption

and the local non-satiation hypothesis are not satisfied, then a Walras equilibrium does not exist for

a convex economy.6 We highlight, however, that this fact certainly does not inhibit the possibility

of the existence of a Walras equilibrium, or a related competitive outcome, in convex economies

maintaining one of these conditions, while relaxing the other. For instance, using variants of the

“irreducibility” condition introduced by Gale [15, 16], which is a weaker condition than the strong

survival condition, but stronger than the weak survival condition, several authors have studied the

existence of competitive outcomes in economy (see Baldrya and Ghosalb [4], Florig [9], Gottardi

and Hens [17], Hammond [18] and McKenzie [22], Spivak [31], among others). The existence of

competitive outcomes for a convex economy when the non-satiation condition is relaxed was studied

in, for instance, Drèze and Müller [8], Marakov [24] and Sato [29]. It is worth mentioning that all

of these contributions maintain the perfect divisibility of goods.

5Broadly speaking, a hierarchic equilibrium might be interpreted as a sort of “vectorial” Walras equilibrium, where
each “component” is a Walras equilibrium for a certain group of agents. If there is only one group, then the hierarchic
equilibrium is a Walras equilibrium. When the weak survival condition holds in the convex economy, these groups
arise endogenously due to the fact that some agents cannot survive in the economy, since they are unable to buy goods
that are beyond their possibilities. However, nothing prevents that individuals in similar conditions from actually
trading certain goods that are affordable to them. Identifying these groups as “socio-economic classes” in terms of
individual wealth, so that the wealth of different classes is of a different order of magnitude, at a rationing equilibrium
poorer consumers do not have access to all the expensive commodities that the richer have access to. Piccioni and
Rubinstein [27] also provide an alternative interpretation of the hierarchic equilibrium in terms of parallel currencies
existing in the economy, ordered by a strict hierarchy and where the trade between currencies of different ranks
is prohibited. A low-ranked currency can only be used in a smaller set of markets than a highly-ranked currency.
Finally, in the case of linear preferences, Florig [11] shows that a hierarchic equilibrium is the limit of standard
competitive equilibria of economies with discrete consumption sets converging to the positive orthant.

6This result follows directly from the fact that every Walras equilibrium in the convex economy can be approxi-
mated by a rationing equilibrium sequence from a discrete sequence that converges to the convex economy. See §4
further on in this paper.
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This paper is organized as follows. In §2 we introduce preliminary concepts and notions, while

§3 presents the model of economies and equilibria notions used in this paper. Therein we also define

the notion of convergence of a sequence of discrete economies to a convex economy. In §4 we present

the main contributions of this paper, the convergence of equilibrium results (namely, Proposition

4.2 when the strong survival condition holds, and Theorem 4.1 for a general case). Finally, most

of the proofs are provided in the Appendix, i.e., §5.

2 Notation and some concepts

In what follows, 0m is the origin of Rm, xt is the transpose of x ∈ Rm, whose Euclidean norm

is ‖x‖; the inner product between x, y ∈ Rm is x · y = xty, and the open ball centered at x

with radius ε > 0 is B(x, ε). For a couple of sets K1, K2 ⊆ Rm, ξ ∈ R and p ∈ Rm, we denote

ξK1 = {ξx : x ∈ K1}, p · K1 = {p · x : x ∈ K1} and K1 ± K2 = {x1 ± x2 : x1 ∈ K1, x2 ∈ K2},
while the set-difference between them is denoted K1 \K2. Furthermore, clK1, intK1 and convK1

denote, respectively, the closure, interior and the convex hull of K1.

In the following, λ(·) denotes the standard Lebesgue measure in the underlying space, and for

a couple of sets K1 ⊆ Rm and K2 ⊂ Rn, L1(K1,K2) stands for the subset of Lebesgue integrable

functions from K1 to K2.

We follow Rockafellar and Wets [28] to denote

N∞ = {N ⊆ N : N \N is finite} and N∗∞ = {N ⊂ N : N is infinite},

and for N ∈ N∗∞, the subset of accumulation points of {xn}n∈N is7

acc {xn}n∈N = {x ∈ Rm : ∃N′ ⊂ N, N′ ∈ N∗∞, xn →N′ x}.

We also recall that the outer limit of a sequence of subsets {Kn}n∈N of Rm is the subset

lim sup
n→∞

Kn = {x ∈ Rm : ∃N ∈ N∗∞, ∃xn ∈ Kn, n ∈ N, with xn →N x} ,

while the inner limit of the sequence is

lim inf
n→∞

Kn = {x ∈ Rm : ∃N ∈ N∞, ∃xn ∈ Kn, n ∈ N, with xn →N x} .

The sequence of subsets {Kn}n∈N of Rm converges in the sense of Kuratowski – Painlevé to the

subset K ⊆ Rm if

lim sup
n→∞

Kn = lim inf
n→∞

Kn = K,

7For N ∈ N∞ or N ∈ N∗∞, and a sequence {xn}n∈N of vectors of Rm, we write xn →N x when limn→∞,n∈N xn = x;
in case N = N we put xn → x.
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in which case we write lim
n→∞

Kn = K.

Finally, the outer limit of a correspondence Ψ : Rm ⇒ Rk at x̄ ∈ Rm is

lim sup
x→x̄

Ψ(x) =
⋃

{xn→x̄}

lim sup
n→∞

Ψ(xn).

3 The model

3.1 Economies and convergence

A “convex economy” (with fiat money) is a private ownership economy, which has a finite number L

of commodities, and a finite number of consumers and producers (indexed by I and J , respectively).

Each firm j ∈ J is characterized by a production set Yj ⊂ RL, and each consumer i ∈ I is

characterized by a consumption set Xi ⊂ RL, a vector of initial resources ei ∈ RL, a strict preference

correspondence Pi : Xi ⇒ Xi, and an initial amount mi ∈ R++ of fiat money. This parameter has

no intrinsic value whatsoever. The total initial resources of the economy is e =
∑

i∈I ei ∈ RL, and

for (i, j) ∈ I × J , θij ∈ [0, 1] is the consumer i’s share in firms j. As usual, we assume that for

every j ∈ J ,
∑

i∈I θij = 1.

The convex economy (with fiat money) is then the collection

E =
(
{Xi, Pi, ei}i∈I , {Yj}j∈J , {θij}(i,j)∈I×J , {mi}i∈I

)
.

We now proceed to define a sequence of “discrete economies” that approximates the convex

economy as indivisibility vanishes. For the sequel we use given sequences νh : N→ N, h = 1, . . . , L,

such that limn→∞ νh(n) =∞, for all h. The family of subsets {Mn}n∈N with

Mn =
{
ξ = (ξ1, . . . , ξL)t ∈ RL : (ν1(n)ξ1, . . . , νL(n)ξL)t ∈ ZL

}
,

then converges in the sense of Kuratowski-Painlevé to RL. Let {Xn
i }n∈N, i ∈ I, and {Y n

j }n∈N, j ∈ J ,

such that

Y n
j = Yj ∩Mn 6= ∅ and Xn

i = Xi ∩Mn 6= ∅.

Each discrete economy of the sequence is conformed by a continuum of consumers and producers,

they partitioned into finitely many types of agents, namely consumers and producers of the convex

economy. We assume that agents of type i ∈ I and j ∈ J are indexed, respectively, by compact

subsets Ti ⊂ R and Tj ⊂ R, pairwise disjoint. The subset of consumers and firms of a discrete

economy is respectively denoted by

I =
⋃
i∈I

Ti and J =
⋃
j∈J

Tj .

The type of producer t ∈ J is j(t) ∈ J , and firms of type j ∈ J of the discrete economy indexed
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by n ∈ N are characterized by the production set Y n
j ⊂ RL. The aggregate production set of these

firms is the convex hull of λ(Tj)Y
n
j , a production plan for firm t ∈ J is denoted by y(t) ∈ Y n

j(t),

and the set of admissible production plans is

Y n =
{
y ∈ L1(J ,∪j∈JY n

j ) : y(t) ∈ Y n
j(t) a.e. t ∈ J

}
.

The type of consumer t ∈ I is i(t) ∈ I, and each consumer of type i ∈ I of the discrete economy

indexed by n ∈ N is characterized by the consumption set Xn
i ⊂ RL, an initial endowment of

resources ei ∈ RL and a strict preference correspondence Pni : Xn
i ⇒ Xi, the restriction of Pi to

Xn
i . A consumption plan of individual t ∈ I is denoted by x(t) ∈ Xn

i(t), and the set of admissible

consumption plans is

Xn =
{
x ∈ L1(I,∪i∈IXn

i ) : x(t) ∈ Xn
i(t) a.e. t ∈ I

}
.

The total initial resources of the economy is e =
∑

i∈I λ(Ti) ei ∈ RL, and for (i, j) ∈ I × J ,

θij ≥ 0 is the consumer of type i’s share in firms of type j. For every j ∈ J , we assume that∑
i∈I λ(Ti)θij = 1. In addition, we also assume that each consumer t ∈ I is initially endowed with

an amount of fiat money m(t) ∈ R+, where m ∈ L1(I,R+).8

A discrete economy indexed by n ∈ N is the collection

En =
(
{Xn

i , P
n
i , ei}i∈I , {Y n

j }j∈J , {θij}(i,j)∈I×J ,m, {Ti}i∈I , {Tj}j∈J
)
,

and we say that the sequence of economies {En}n∈N approximates economy E .

The feasible consumption-production plans of En are the elements of9

A(En) =

{
(x, y) ∈ Xn × Y n :

∫
I
x(t)dt =

∫
J
y(t)dt+ e

}
.

3.2 Demand and supply

We now define supply and demand concepts for economy En; the extension to economy E is direct.

In what follows p ∈ RL, q ∈ R+ and K stands for a “salient cone” of RL, whose family is CL.10 The

“profit”, the “Walras supply” and the “rationing supply” of a type j ∈ J firm are, respectively,

πnj (p) = λ(Tj) sup
z∈Y nj

p · z, Snj (p) = arg max
z∈Y nj

p · z

8The conditions for all i ∈ I, m(t) = mi ∈ R+, a.e. t ∈ Ti, and λ(Ti) = λ(Tj) = 1, (i, j) ∈ I ×J , might be assumed
just for interpretative purposes. These conditions are not required to prove our main results.

9See Aubin and Frankowska [2] for the definition of integral of a correspondence.
10We recall a convex set K ⊂ RL is a convex cone if 0L ∈ K and ξK ⊂ K for all ξ > 0; a convex cone K is said to

be “salient” if K ∩ −K = {0L}.
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and

σnj (p,K) =
{
z ∈ Snj (p) : p 6= 0L ⇒ (Yj − {z}) ∩K = {0L}

}
.

The “income” of consumer t ∈ I is

wnt (p, q) = p · ei(t) + qm(t) +
∑
j∈J

θi(t)jπ
n
j (p),

whose “budget set” is Bn
t (p, q) =

{
ξ ∈ Xi(t) : p · ξ ≤ wnt (p, q)

}
.

The “Walras demand”, the “weak demand” and ”rationing demand” for consumer t ∈ I are,

respectively,

dnt (p, q) =
{
ξ ∈ Bn

t (p, q) : Bn
t (p, q) ∩ Pni(t)(ξ) = ∅

}
, Dn

t (p, q) = lim sup
(p′,q′)→ (p,q)

dnt (p′, q′),

and

δnt (p, q,K) =
{
ξ ∈ Dn

t (p, q) : Pni(t)(ξ)− {ξ} ⊆ K
}
.

Remark 3.1. As we shall ensure that dnt (·) is closed valued and locally bounded, Theorem 5.19 in

Rockafellar and Wets [28] implies that Dn
t (·) is upper hemi-continuous while dnt (·) may fail to be

upper hemi-continuous. Notice also that, by definition,

dnt (p, q) ⊆ Dn
t (p, q) and δnt (p, q,K) ⊆ Dn

t (p, q).

The next characterization of weak demand is a direct consequence of Proposition 3.1 in Florig

and Rivera [13].

Proposition 3.1. If m(t) > 0 and (p, q) ∈ RL × R++, then the following holds for all n ∈ N:

Dn
t (p, q) =

{
ξ ∈ Bn

t (p, q) : inf
{
p · Pni(t)(ξ)

}
≥ wnt (p, q), ξ 6∈ convPni(t)(ξ)

}
.

3.3 Equilibrium

Next definition gives some of the equilibrium notions that are used in this paper. They are presented

for economy En, and their extension to economy E is direct.

Definition 3.1. Given (xn, yn, pn, qn) ∈ A(En)× RL × R+ and Kn ∈ CL, we call

(a) (xn, yn, pn, qn) a “Walras equilibrium with fiat money” of En, if for a.e. t ∈ I, xn(t) ∈
dnt (pn, qn) and for a.e. t ∈ J , yn(t) ∈ Snj(t)(pn),

(b) (xn, yn, pn, qn) a “weak equilibrium” of En, if for a.e. t ∈ I, xn(t) ∈ Dn
t (pn, qn) and for a.e.

t ∈ J , yn(t) ∈ Snj(t)(pn),

7



(c) (xn, yn, pn, qn,Kn) a “rationing equilibrium” of En, if for a.e. t ∈ I, xn(t) ∈ δnt (pn, qn,Kn)

and for a.e. t ∈ J , yn(t) ∈ σnt (pn,Kn).11

Remark 3.2. Note that every Walras equilibrium is a weak equilibrium and every weak equilibrium

is a rationing equilibrium.

We end this part introducing the “hierarchic equilibrium” concept, yet another a competitive

outcome for economies En and E . Hereinafter, for k ∈ N, [p1, . . . , pk] ∈ RL×k is the matrix

whose columns are p1, . . . , pk ∈ RL. Given that, a “hierarchic price” for consumption goods is

P = [p1, . . . , pk]
t ∈ Rk×L, and the “hierarchic value” of ξ ∈ RL is Pξ = (p1 · ξ, . . . , pk · ξ)t ∈ Rk.

Moreover, denoting by suplex the supremum with respect to ≤lex, the lexicographic order12 on RL,

the “hierarchic supply” and the “hierarchic profit” of a firm of type j ∈ J of economy En at P are,

respectively,

Snj (P) = {z ∈ Y n
j : ∀z′ ∈ Y n

j , Pz′ ≤lex Pz} and πnj (P) = λ(Tj) suplex{Pz : z ∈ Y n
j },

and given Q ∈ Rk+, the hierarchic budget set of consumer t ∈ I is

Bn
t (P,Q) = cl

ξ ∈ Xn
i(t) : Pξ ≤lex Pei(t) +m(t)Q+

∑
j∈J

θi(t)jπ
n
j (P)

 .

Based in Florig [10], we introduce the next equilibrium concept.13

Definition 3.2. A collection (xn, yn,Pn,Qn) ∈ A(En)× Rk×L × Rk+ is a “hierarchic equilibrium”

of the economy En if:

(a) for a.e. t ∈ J , yn(t) ∈ Snj(t)(Pn),

(b) for a.e. t ∈ I, xn(t) ∈ Bn
t (Pn,Qn) and Pni(t)(xn(t)) ∩Bn

t (Pn,Qn) = ∅.

The number k ∈ N in last expressions will be determined at the equilibrium. When k = 1, the

hierarchic equilibrium reduces to a Walras equilibrium (with fiat money).

11The salient cone in the rationing equilibrium definition is determined endogenously as part of the equilibrium,
and summarizes the information that each consumer needs to have in addition to market prices (and their own
characteristics) in order to formulate a demand, leading to a stable economic situation, in the sense that no further
trading can take place making all participants in a second round of trading strictly better off. Under general conditions
over the economy, the existence of such an equilibrium is proved in Florig and Rivera [13].

12For (s, t) ∈ Rm × Rm, we recall s ≤lex t, if sr > tr, r ∈ {1, . . . ,m} implies that ∃ρ ∈ {1, . . . , r − 1} such that
sρ < tρ. We write s <lex t if s ≤lex t, but not t ≤lex s. The maximum and the argmax with respect to this order are
denoted by maxlex and argmaxlex, respectively (similarly for minlex and argminlex).

13Marakulin [25] introduced a similar notion for exchange economies, using non-standard analysis.
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4 Hypotheses and convergence results

4.1 Hypotheses

Assumptions below are used at different parts of this paper, they depending on the convergence

result to be established.

Assumption C. For all (i, j) ∈ I × J , Xi and Yj are convex and compact polyhedral

sets.14

Assumption P. For all i ∈ I, Pi is irreflexive and transitive, and has an open graph

in Xi ×Xi.

Assumption M. m : I → R+ is bounded and for a.e. t ∈ I, m(t) > 0.

Assumption S. For all i ∈ I, ei ∈
(
Xi −

∑
j∈J θijλ(Tj)Yj

)
.

Assumption SA. For all i ∈ I ei ∈ int
(
Xi −

∑
j∈J θijλ(Tj)Yj

)
.

Assumption A. For all n ∈ N, i ∈ I and all j ∈ J , Xi = convXn
i and Yj = convY n

j .

Assumption F. For all i ∈ I and each face F of Xi such that15

{ei}+
∑
j∈J

θijλ(Tj)Yj

 ∩Xi ⊆ F,

the sequence {F ∩Xn
i }n∈N converges in the sense of Kuratowski-Painlevé to F .

Assumption F requires that Xn
i restricted to the affine subspace for which the interiority as-

sumption holds converges to Xi restricted to that affine subspace. This is important to ensure that

the budget set for a sequence of equilibria of the economies En converges to a budget set of the

economy E for some limit of the price sequence considered.

The following proposition is an immediate consequence of Theorem 4.1 in Florig and Rivera

[13]. For the proof of that result, it is enough to check that Assumption C implies that both

the consumption and production sets of any economy of sequence {En}n∈N that approximates E
are finite (i.e., the number of its elements is finite). The proposition ensures that the sequence of

equilibria for which we study convergence do actually exist.

Proposition 4.1. Suppose E satisfies Assumptions C, P, M and S, and let {En}n∈N be a se-

quence of economies approximating E. For each n ∈ N, there exists a rationing equilibrium

(xn, yn, pn, qn,Kn), with qn > 0, for economy En.
14That is, the convex hull of a finite number of vectors.
15For a convex compact polyhedron P ⊂ Rm, a face is a set F ⊆ P such that there exists ψ ∈ Rm with F =

argmaxψ · P .
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4.2 Convergence under the “strong survival assumption”

In the next proposition, the strong survival assumption SA plays an important role in establishing

the convergence to a Walras equilibrium. Despite that this hypothesis is widely used in the liter-

ature, it is unrealistic, because it states that every consumer is initially endowed with a strictly

positive quantity of every existing good. Typically, most consumers have a single good to sell (usu-

ally, their labor). In fact, it implies that all agents have the same level of income at equilibrium in

the sense that they have all access to the same goods.

Proposition 4.2. Suppose E satisfies Assumptions C, P, M and SA, and let {En}n∈N be a se-

quence of economies approximating E satisfying Assumption A. For each n ∈ N, let (xn, yn, pn, qn)

be a weak equilibrium of En, with qn > 0 and ‖ (pn, qn) ‖= 1. Then, there exists N ∈ N∗∞, such

that the following hold:

(a) (pn, qn)→N (p∗, q∗),

(b) there is (x∗, y∗) ∈ A(E), such that for a.e. t ∈ I, x∗(t) ∈ acc{xn(t)}n∈N, and for a.e. t′ ∈ J ,

y∗(t′) ∈ acc{yn(t′)}n∈N, with (x∗, y∗, p∗, q∗) a Walras equilibrium with fiat money for E.

Moreover, if for a.e. t ∈ I, x∗(t) ∈ clPi(t)(x
∗(t)), then (x∗, y∗, p∗) is a Walras equilibrium for E.

Proof. First note that {En}n∈N approximating E implies that for all i ∈ I, lim
n→∞

Xn
i = Xi. By

Assumption SA, the smallest face of Xi containing{ei}+
∑
j∈J

θijλ(Tj)Yj

 ∩Xi

is Xi, which implies that Assumption F is satisfied. Therefore, all the assumptions of Theorem

4.1 below are satisfied. Assumption SA implies that for a hierarchic equilibrium (x, y,P,Q) with

P = [p1, . . . ,pk]
t ∈ Rk×L and Q = (q1, . . . , qk)

t ∈ Rk+ (see definition in next section), such that

(x∗, y∗, p1, q1) is a Walras equilibrium with fiat money (cf Florig [10]). Moreover, if for a.e. t ∈ I,

x∗(t) ∈ clPi(t)(x
∗(t)), then standard arguments imply that q1 = 0, this concluding the proof.

Remark 4.1. Since every Walras equilibrium is a weak equilibrium, Proposition 4.2 establish that

under suitable conditions every Walras equilibrium of a convex economy could be approximated by

a weak equilibria sequence and therefore by a rationing equilibria sequence.

4.3 The general case

We now replace assumption SA by a more realistic one, assuming that every consumer could decide

not to exchange anything (condition S, weak survival assumption). We will not assume however

that he could survive for very long without exchanging anything. In such a case the limit of a

sequence of rationing equilibria will not necessarily be a Walras equilibrium; indeed, it will be
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a hierarchic equilibrium, which is a competitive equilibrium with a segmentation of individuals

according to their level of wealth. When this segmentation consists of just one group, then the

hierarchic equilibrium reduces to a Walras equilibrium.

The next theorem, a generalization of Proposition 4.2, is the main result of this paper. The

proof is given in the Appendix section.

Theorem 4.1. Suppose E satisfies Assumptions C, P, M and S, and let {En}n∈N be a sequence

of economies that approximates E and satisfying Assumptions A and F. For each n ∈ N, let

(xn, yn, pn, qn) be a weak equilibrium of En, with qn > 0 and ‖ (pn, qn) ‖= 1. Then, there exists

a hierarchic equilibrium (x∗, y∗,P,Q) for economy E, with P = [p1, . . . ,pk]
t, Q = (q1, . . . , qk)

t,

k ∈ {1, . . . , L}, such that for some N ∈ N∗∞ the following hold:

(i) for each n ∈ N, pn =
∑k

r=1 εr(n) pr, with εr+1(n)/εr(n)→N 0,

(ii) for a.e. t ∈ I, x∗(t) ∈ acc{xn(t)}n∈N, and for a.e. t ∈ J , y∗(t) ∈ acc{yn(t)}n∈N.

Remark 4.2. Since a rationing equilibrium is a weak equilibrium (see Definition 3.1), it follows

that Theorem 4.1 remains valid when using a sequence of rationing equilibria instead of a sequence

of weak equilibria as stated.

5 Appendix: the proofs

The proof of Theorem 4.1 requires some additional definitions and technical results, presented in

§5.1. The proof of Theorem 4.1 is given in §5.2.

5.1 Preliminary results

Both Definition 5.1 and Lemma 5.1 below are taken borrowed from Florig and Rivera [13].

Definition 5.1. For integer k ∈ {1, . . . ,m}, a set of orthonormal vectors {ψ1, . . . , ψk} ⊂ Rm

coupled with sequences εr : N → R++, r ∈ {1, . . . , k}, is called a lexicographic decomposition of a

sequence ψ : N→ Rm, if there exists N ∈ N∗∞ such that following hold:

(a) for all r ∈ {1, . . . , k − 1}, εr+1(n)/εr(n)→N 0,

(b) for all n ∈ N, ψ(n) =
∑k

r=1 εr(n)ψr.

The lexicographic decomposition of ψ : N→ Rm is denoted as {{ψr, εr}kr=1,N}.

Lemma 5.1. Every sequence ψ : N→ Rm \ {0m} admits a lexicographic decomposition.

For the lexicographic decomposition above and 1 ≤ r ≤ k, we set

Ψ(r) = [ψ1, . . . , ψr] ∈ Rm×r,
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and for z ∈ Rm and Z ⊆ Rm we denote

Ψ(r)z = (ψ1 · z, . . . , ψr · z)t ∈ Rr and Ψ(r)Z = {Ψ(r)z : z ∈ Z} ⊆ Rr.

The next lemmata refers to a sequence ψ : N→ Rm \ {0m}, whose lexicographic decomposition

is {{ψr, εr}kr=1,N}. Parts (i) and (ii) of this result are proved in Florig and Rivera [13], while part

(iii) is a direct consequence of part (ii) coupled with the observation that for any ξ ∈ Rm and finite

set of points Z ⊂ Rm, conv argmax ξ · Z = argmax ξ · convZ.

Lemma 5.2.

(i) For all z ∈ Rm there exists n̄ ∈ N such that for all n > n̄ with n ∈ N:

Ψ(k) z ≤lex 0k ⇐⇒ ψ(n) · z ≤ 0.

(ii) If Z ⊆ Rm is a finite set, then there exists n̄ ∈ N such that for all n > n̄ with n ∈ N:

argmaxlex Ψ(k)Z = argmax ψ(n) · Z.

(iii) If Z ⊆ Rm is a convex and compact polyhedron, then there exists n̄ ∈ N such that for all

n > n̄ with n ∈ N:

argmaxlex Ψ(k)Z = argmax ψ(n) · Z.

Notice that both parts (ii) and (iii) in Lemma 5.2 remain valid when replacing argmaxlex by

argminlex.

The next lemmata is a key property used in the proof of our main result.

Lemma 5.3. Let Z ⊂ Rm be a convex and compact polyhedron, and define

ρ = max
{
r ∈ {0, . . . , k} : minlex Ψ(r)Z = 0max{1,r}

}
and F = argminlex Ψ(ρ)Z.

The following holds:

(i) lim sup
n→∞

{z ∈ Z : ψ(n) · z ≤ 0} ⊆ cl {z ∈ Z : Ψ(k)z ≤lex 0k} .

Suppose now that minlex Ψ(k)Z <lex 0k, and let {Zn}n∈N ⊂ Rm such that

lim
n→∞

Zn = Z and lim
n→∞

(Zn ∩ F) = Z ∩ F .

Then the following holds:

(ii) cl{z ∈ Z : Ψ(k)z ≤lex 0k} ⊂ lim inf
n→∞

{z ∈ Zn ∩ F : ψ(n) · z < 0}.
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Proof. For N ∈ N∗∞ and n′ ∈ N, we set Nn′ = {n ∈ N : n > n′}.

For the proof of part (i), let z̄ ∈ argminlex Ψ(k)Z and assume that lim sup
n→∞

{z ∈ Z : ψ(n) · z ≤

0} 6= ∅, since otherwise the result is trivial. Hence, for z∗ in that subset, there is N ∈ N∗∞ and

{zn}n∈N ⊂ Z such that zn →N z∗ and for all n ∈ N, ψ(n) · zn ≤ 0. By Lemma 5.2, part (iii), there

exists n1 ∈ N such that for all n ∈ Nn1 , we have

argminlex Ψ(k)Z = argminψ(n) · Z.

As for all n ∈ Nn1 ,

ψ(n) · z̄ = minψ(n) · Z ≤ ψ(n) · zn ≤ 0,

we have by part (i) of Lemma 5.2 that Ψ(k) z̄ ≤lex 0k.

Let σ = max
{
r ∈ {0, . . . , k} : Ψ(r)z∗ = 0max{1,r}

}
. If Ψ(k)z∗ ≤lex 0k, then the conclusion is

trivial. Therefore, we assume Ψ(k)z∗ >lex 0k, which implies that σ < k and ψσ+1 · z∗ = δ > 0. At

this stage, two cases must be considered.

Case 1. ρ < σ.

As ρ < σ, we have ρ < k, Ψ(ρ + 1) z̄ <lex 0ρ+1 and Ψ(ρ + 1) z∗ = 0ρ+1. Therefore, for all

µ ∈ [0, 1[,

Ψ(ρ+ 1) (µz̄ + (1− µ)z∗) <lex 0ρ+1.

Hence Ψ(k) (µz̄ + (1− µ)z∗) <lex 0k, implying that z∗ ∈ cl {z ∈ Z : Ψ(k)z ≤lex 0k}.

Case 2. ρ ≥ σ.

As ρ ≥ σ, for all r ∈ {1, . . . , σ}, ψr · z̄ = ψr · z∗ = 0. Then {z̄, z∗} ⊆ argminlex Ψ(σ)Z. For

n ∈ N we set

ψ∗(n) =
σ∑
r=1

εr(n)ψr,

with ψ∗(n) = 0 when σ = 0. By part (ii) in Lemma 5.2 there exists n2 > n1 such that for all

n ∈ Nn2 , 0 = ψ∗(n) · z̄ = ψ∗(n) · z∗ ≤ ψ∗(n) · zn. For n ∈ N, we set

an =
σ+1∑
r=1

εr(n)ψr · zn and bn =
εσ+2(n)

εσ+1(n)

k∑
r=σ+2

εr(n)

εσ+2(n)
ψr · zn,

with bn = 0 if σ + 1 = k. By the fact that {zn}n∈N remains in a compact set, there exists n3 > n2

such that for all n ∈ Nn3 , on the one hand

an ≥ εσ+1(n)ψσ+1 · zn > εσ+1(n)
δ

2
,

and, on the other hand, since bn converges to zero,

bn ∈
1

4
[−δ, δ].
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Therefore, for all n ∈ Nn3 ,

0 ≥ ψ(n) · zn = an + εσ+1(n)bn ≥ εσ+1(n)
δ

4
,

contradicting δ > 0, hence concluding the proof of part (i).

In order to prove the part (ii), let z̄ ∈ argminlex Ψ(k)Z. By the fact that minlex Ψ(k)Z <lex 0k,

we have ρ < k and ψρ+1 · z̄ < 0. Let ζ ∈ cl{z ∈ Z : Ψ(k)z ≤lex 0k}. Then, for ε ∈]0, 1] there exists

ζε ∈ B(ζ, ε/2) ∩ Z such that Ψ(k)ζε ≤lex 0k. By the convexity of Z, for µ ∈]0, ε/2[ it follows that

zε = (1− µ)ζε + µz̄ ∈ Z ∩ B(ζ, ε),

and then Ψ(k)z̄ ≤lex Ψ(k)zε ≤lex Ψ(k)ζε ≤lex 0k.

The definition of ρ implies Ψ(ρ)z̄ = 0max{1,ρ} and therefore we have also

Ψ(ρ)zε = Ψ(ρ)ζε = 0max{1,ρ}.

This last result coupled with the fact that ρ < k implies

ψρ+1 · z̄ ≤ ψρ+1 · zε ≤ ψρ+1 · ζε ≤ 0 and ψρ+1 · z̄ < 0.

Since ψρ+1 · ζε ≤ 0, we also have δ = ψρ+1 · zε < 0. Therefore Ψ(ρ+ 1)zε <lex 0ρ+1. Hence, we have

established that Ψ(k)zε <lex 0, zε ∈ F and zε ∈ B(ζ, ε). Let us now consider {zn}n∈N ⊆ F ∩ Zn
with zn →N zε. We observe that

ψ(n) · zn =
k∑
r=1

εr(n)ψr · zn = ερ+1(n) (αn + βn),

where

αn =
1

ερ+1(n)

ρ+1∑
r=1

εr(n)ψr · zn and βn =
1

ερ+1

k∑
r=ρ+2

εr(n)ψr · zn,

with βn = 0 if ρ + 1 = k. Given that, for all n ∈ N, Ψ(ρ)zn = 0max{1,ρ}, and as βn converges to

0 and δ < 0, there exists n̄ such that for all n ∈ N with n > n̄, αn < δ/2 and βn < −δ/4 and

therefore αn + βn < δ/4 < 0. All of this implies that for all n ∈ N with n > n̄,

ψ(n) · zn = ερ+1(n) (αn + βn) < ερ+1(n) δ/4 < 0.

Therefore, for ζ ∈ cl{z ∈ Z : Ψ(k)z ≤lex 0k} and ε ∈]0, 1], we have that

zε ∈ B(ζ, ε) ∩ lim inf
n→∞

{z ∈ Zn ∩ F : ψ(n) · z < 0},
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and then, since the lim inf above is a closed set,16 ζ ∈ lim inf
n→∞

{z ∈ Zn ∩ F : ψ(n) · z < 0}.

5.2 Proof of Theorem 4.1

Proof. In the following, we use a sequence (xn, yn, pn, qn)n∈N of weak equilibria with qn > 0 of the

economy En (which exists by Proposition 4.1, considering that a rationing equilibrium is a weak

equilibrium). We can assume without loss of generality that for all t ∈ I, xn(t) ∈ Dn
t (pn, qn) and

all t ∈ J , yn(t) ∈ Snj (pn).17

In the remaining we split the proof of theorem into six steps.

Step 1 . Hierarchic price.

Since ‖(pn, qn)‖ = 1, n ∈ N, from Lemma 5.1 there exist {{(pr, qr), εr}r=1,...,k,N}, a lexi-

cographic decomposition of the sequence {ψ(n) = (pn, qn)}n∈N. In the sequel, without loss of

generality, we identify that subset N with N, and we denote

P = [p1, . . . ,pk]
t and Q = (q1, . . . , qk)

t,

and for r ∈ {1, . . . , k}, we set P(r) = [p1, . . . ,pr]
t and Q(r) = (q1, . . . , qr)

t.

Step 2. Supply: for all t ∈ J , lim sup
n→∞

Snj(t)(pn) ⊆ Sj(t)(P).

As for all j ∈ J , by Lemma 5.2 there exists nj ∈ N such that for all n > nj ,

Sj(pn) = Sj(P) = argmaxlexPYj .

For all n ∈ N and all j ∈ J , convY n
j = Yj , S

n
j (pn) ⊆ Sj(pn) = convSnj (pn), implying that for all

n > nJ = max{nj , j = 1, . . . , J}, and all t ∈ J ,

Snj(t)(pn) ⊆ Sj(t)(P) = convSnj(t)(pn),

hence concluding the proof of this Step.

Step 3. Income.

For the sequel, for all j ∈ J , let ζj ∈ argmaxlexPYj , and for all i ∈ I, we set zi = ei +∑
j∈J θijλ(Tj)ζj . By Step 2, for all t ∈ I and all n > nJ , wt(pn, qn) = pn · zi(t) + qnm(t).

Step 4. Budget: For all t ∈ I, lim sup
n→∞

Bt(pn, qn) ⊆ Bt(P,Q). Moreover, if m(t) > 0 then

Bt(P,Q) ⊆ lim inf
n→∞

{
x ∈ Xn

i(t) : pn · x < wt(pn, qn)
}
.

16See, for example, Proposition 4.4 in Rockafellar and Wets [28].
17Since a countable union of negligible sets is negligible, we could restrict the sequel to an appropriate subset of

full Lebesgue measure. Here, as the consumption and production sets are finite for each n ∈ N, we could also adjust
the sequence (xn, yn) such that for all t ∈ I, xn(t) ∈ Dn

t (pn, qn) and all t ∈ J , yn(t) ∈ Snj (pn) while maintaining
(xn, yn) ∈ A(En).
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Using zi from Step 3, the first inclusion is a straightforward consequence of part (i) of Lemma

5.3 applied to Z =
(
Xi(t) − zi

)
× {−m(t)}. Indeed, note that for all n ∈ N, n > nJ , and all

x′n(t) ∈ Bt(pn, qn) we have ψn · zn ≤ 0 with zn = (x′n(t)− zi(t),−m(t)) and ψ(n) = (pn, qn).

For the second inclusion, for t ∈ I and n ∈ N, we set F = minlexP(ρ)Xi(t) and

ρ = max
{
r ∈ {0, . . . , k} : minlexP(r)Xi(t) = 0max{1,r}

}
.

Assumption S coupled with the observation m(t)Q >lex 0k implies

minlex P(
(
Xi(t) − zi(t)

)
−m(t)Q <lex 0k and m(t)Q(ρ) = 0max{1,ρ}.

Therefore, producers profit maximization and Assumption S implies{ei(t)}+
∑
j∈J

θi(t)jλ(Tj)Yj

 ∩Xi(t) ⊆ F .

By part (iii) of Lemma 5.2 we observe that F is a face of Xi(t), and then, by Assumption F it

follows that

lim
n→∞

Xn
i(t) ∩ F = Xi(t) ∩ F .

By part (ii) of Lemma 5.3

Bt(P,Q) ⊆ lim inf
n→∞

{
x ∈ Xn

i(t) ∩ F : pn · (x− zi(t)) < qnm(t)
}
,

and since

lim inf
n→∞

{
x ∈ Xn

i(t) ∩ F : pn · (x− zi(t)) < qnm(t)
}
⊆ lim inf

n→∞

{
x ∈ Xn

i(t) : pn · x < wt(pn, qn)
}

the second inclusion holds true.

Step 5. Demand: for all t ∈ I with m(t) > 0 and all x∗(t) ∈ acc{xn(t)}n∈N,

Pi(t)(x
∗(t)) ∩Bt(P,Q) = ∅.

Let t ∈ I such that m(t) > 0 and choose N(t) ∈ N∗∞ such that xn(t) →N(t) x
∗(t) and for all

n ∈ N(t), n > nJ . By contraposition, assume that there is ξ ∈ Pi(t)(x∗(t)) ∩ Bt(P,Q). Then, by

Step 5 there exists n̄1 > nJ and ξn →N ξ such that for all n > n̄1 with n ∈ N,

pn · (ξn − zi(t))− qnm(t) < 0 and ξn ∈ Xn
i(t).
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As the graph of Pi(t) is open, there exists n̄2 > n̄1 such that for all n > n̄2 with n ∈ N,

pn · (ξn − zi(t))− qnm(t) < 0 and ξn ∈ Xn
i(t) ∩ Pi(t)(x

∗(t)),

and, again, as the graph of Pi(t) is open, we can choose n̄3 > n̄2 such that for all n > n̄3 with

n ∈ N(t), we have pn · (ξn − zi(t))− qnm(t) < 0 and ξn ∈ Pni(t)(xn(t)). As qnm(t) > 0, the last fact

contradicts xn(t) ∈ Dn
t (pn, qn) for all n > n̄3 with n ∈ N(t) (see Proposition 3.1).

Step 6. Equilibrium allocation.

Using Fatou’s lemma in Artstein [1], there exists (x∗, y∗) ∈ A(E) such that for a.e. t ∈ I and

a.e. t′ ∈ J , x∗(t) ∈ acc{xn(t)}n∈N and y∗(t′) ∈ acc{yn(t′)}n∈N. By Step 2, for a.e. t ∈ J , y∗(t) ∈
Sj(t)(P), and by Steps 4 and 5, for a.e. t ∈ I, x∗(t) ∈ Bt(P,Q) and Pi(t)(x

∗(t))∩Bt(P,Q) = ∅.
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